If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5x^2+5x+1.5=0
a = 1.5; b = 5; c = +1.5;
Δ = b2-4ac
Δ = 52-4·1.5·1.5
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-4}{2*1.5}=\frac{-9}{3} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+4}{2*1.5}=\frac{-1}{3} =-1/3 $
| 3-2(b-2)=2-2b | | 6=a/7-5 | | 6.9x+17=99.8 | | -f/7-8=2 | | 3(2x–1)+4x=13 | | 15+5x;x=3 | | 4x/3=8+x | | -2k+15=45 | | 6×+5=7x+2 | | 14x-12=156 | | 4x^2−11x−20=0 | | 11–j=-7 | | 8a-9/3-10=3 | | 283=-w+172 | | 5w-7=32 | | x^2+7x=3x+12 | | 0.4^x=6.25 | | 15+2k=45 | | (x+5)^2−36=0 | | 4a+8=8a+24 | | -2k-5=-7 | | 18=(-f)=91 | | (x+5)2−36=0 | | -w+167=39 | | 4x=-x+100 | | 2z+15/3+9=20 | | 12/18=36/x | | 3x^2+5-3=0 | | 3x^2+5x−3=0 | | a/3–7=-10 | | (x+5)/7=1 | | 4x=1124x=112. |